Predicting Plant Growth from Time-Series Data Using Deep Learning

نویسندگان

چکیده

Phenotyping involves the quantitative assessment of anatomical, biochemical, and physiological plant traits. Natural growth cycles can be extremely slow, hindering experimental processes phenotyping. Deep learning offers a great deal support for automating addressing key phenotyping research issues. Machine learning-based high-throughput is potential solution to bottleneck, promising accelerate within phenomic research. This presents study deep networks’ predict plants’ expected growth, by generating segmentation masks root shoot systems into future. We adapt an existing generative adversarial predictive network this new domain. The results show efficient leaf that provides what system will look like at future time, based on time-series data growth. present benchmark two public datasets Arabidopsis (A. thaliana) Brassica rapa (Komatsuna) plants. strong performance, capability proposed methods match expert annotation. method highly adaptable, trainable (transfer learning/domain adaptation) different species mutations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

predicting streamflow using data-driven model and time series

accurate forecasting of streamflows has been one of the most important issues as it plays a key role in allotment of water resources. river flow simulations to determine the future river flows are important and practical. given the importance of flow in the coming years, in this research three stations: haji qooshan, ghare shoor and tamar in gorganrood cachment were simulated in 2002-2011. to s...

متن کامل

Integration of remote sensing and meteorological data to predict flooding time using deep learning algorithm

Accurate flood forecasting is a vital need to reduce its risks. Due to the complicated structure of flood and river flow, it is somehow difficult to solve this problem. Artificial neural networks, such as frequent neural networks, offer good performance in time series data. In recent years, the use of Long Short Term Memory networks hase attracted much attention due to the faults of frequent ne...

متن کامل

Generating Student Feedback from Time-Series Data Using Reinforcement Learning

We describe a statistical Natural Language Generation (NLG) method for summarisation of time-series data in the context of feedback generation for students. In this paper, we initially present a method for collecting time-series data from students (e.g. marks, lectures attended) and use example feedback from lecturers in a datadriven approach to content selection. We show a novel way of constru...

متن کامل

Predicting Financial Time Series Data Using Hybrid Model

Prediction of financial time series is described as one of the most challenging tasks of time series prediction, due to its characteristics and their dynamic nature. Support vector regression (SVR), Support vector machine (SVM) and back propagation neural network (BPNN) are the most popular data mining techniques in prediction financial time series. In this paper a hybrid combination model is i...

متن کامل

Predicting Chaotic Time Series by Reinforcement Learning

Although a large number of researches have been carried out into the analysis of nonlinear phenomena, little is reported about using reinforcement learning, which is widely used in artificial intelligent, intelligent control, and other fields. Here, we consider the problem of chaotic time series using a self-organized fuzzy neural network and reinforcement learning, in particular, a learning al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2021

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs13030331